ZOAPATANOLIDES C AND D, TWO GUAIANOLIDES FROM MONTANOA TOMENTOSA*

Leovigildo Quijano, Federico Gomez G, José S Calderón, Jesus López P and Tirso Rios

Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cuidad Universitaria, 04510 México, DF

(Received 13 May 1983)

Key Word Index-Montanoa tomentosa, Asteraceae, guaianolides, sesquiterpene lactones

Abstract—Further investigation of *Montanoa tomentosa* afforded two new guaianolides as well as the known pumilin and the previously isolated heliangolide zoapatanolide A. The structures were established on the basis of spectroscopic studies and chemical evidence

INTRODUCTION

In our previous papers we have described the isolation and structure elucidation of sesquiterpene lactones of the germacrolide type from Montanoa frutescens [1] and of the heliangolide type from M tomentosa [2] Recently, we have re-investigated M tomentosa and isolated, besides zoapatanolide A [2], three guaianolides, the known pumilin (2) with established X-ray structure, previously isolated from Berlandiera pumila [3], and two new compounds which we have named zoapatanolides C and D These represent the first guaianolides isolated from the genus Montanoa The close structural relationship of the guaianolides present in M tomentosa and those isolated from Berlandiera pumila [3] and B subacaulis [4] might have taxonomic implications

RESULTS AND DISCUSSION

The structures of zoapatanolides C (1a) and D (1b) were established by extensive ¹H NMR studies and spin—spin decoupling as well as some chemical evidence

Zoapatanolide C (1a), $C_{22}H_{26}O_9$, mp 130-132°, showed a UV end absorption at 207 nm (ε 11 544) and typical IR bands at 1762, 1630 and 3430 cm⁻¹ indicating the presence of a γ -lactone moiety, an α,β -unsaturated ester and hydroxyl groups, respectively The unsaturated ester was shown to be an angelate by the typical mass spectral peaks at m/z 83 and 55 as well as the vinyl proton signal at δ 6 2 and the vinyl methyl signals at δ 2 03 and 1 96 in the ¹H NMR spectrum (Table 1), which also showed the presence of an acetate signal at $\delta 2.12$ The ¹H NMR spectrum of 1a, when determined in CDCl₃, only showed overlapping signals at $\delta 61-63$ due to the exocyclic methylene protons, the side-chain vinyl proton and H-9 A complex signal at δ 3 8-3 9 was resolved into a triplet of triplets (H-7), a triplet (H-8) and a doublet (H-6) when the spectrum was run in C_6D_6 A broad singlet at δ 5 63 was assigned to H-2 on the carbon bearing the acetate group, since this signal shifted upfield after hydrolysis A doublet at $\delta 377$ (J = 20 Hz) was assigned to H-3 on the carbon bearing the epoxy-function Finally, the methyl groups on C-10 and C-4 appeared as singlets at δ 1 66 and 1 60, respectively

The acetylation product of 1a contained one more acetate signal in the ¹H NMR spectrum and showed a hydroxyl absorption (3440 cm⁻¹) in the IR spectrum suggesting the presence of a tertiary hydroxyl group and a secondary one in zoapatanolide C (1a) which can be placed at C-5 and C-8, respectively, since the H-6 signal appeared as a doublet and H-8 as a triplet that shifted downfield upon acetylation

All proton signals of the basic skeletal arrangement of zoapatanolide C (1a) were mainly assigned by extensive ¹H NMR spin-decoupling experiments of the acetate 1c in C_6D_6 Irradiation of the triplet of triplets at δ 3 9 (H-7, J=10 5 Hz, J=3 0 Hz) collapsed the exocyclic methylene doublets at δ 5 17 (J=3 0 Hz) and 6 06 (J=3 1 Hz) to singlets, the triplet at δ 5 04 (H-8, J=10 5 Hz) to a doublet, and the doublet at δ 2 81 (H-6, J=10 3 Hz) to a singlet Thus these signals can be assigned to H-8 and H-6 Furthermore, since H-6 is a doublet, the tertiary hydroxyl group must be placed at the C-5 position of the guaranolide skeleton, as in pumilin [3]

Irradiation at the frequency of H- $\overline{8}$ ($\overline{\delta}$ 5 04) affected one of the C-13 protons and changed the H-7 triplet of triplets to a doublet of doublets (J=10 5 Hz, J=3 0 Hz), and the broad doublet at δ 6 37 (H-9, J=10 2 Hz) to a broad singlet Saturation of the H-6 doublet at δ 2 81 changed

1a R = OH, R¹ = H

1b R = R1 = H

1c $R = OH \cdot R^1 = Ac$

1d $R = H, R^1 = Ac$

^{*}Contribution No 630 from Instituto de Quimica, UNAM

L Quijano et al

Table 1	¹ H NMR data* of zoapatanolides C (1a) and D (1b) and acetates 1c and 1d (80 MHz,
140.0	· · · · · · · · · · · · · · · · · · ·
	CDCl ₃ , TMS as internal standard)

H	1a	1b	1c	1d
2	5 62 (5 4)† s (br)	5 77 (5 57 s (br)	5 65 (5 42) s (br)	5 76 (5 58) s (br)
3	3 75 (3 43 (d	3 66 (3 37) d	3 77 (3 39) d	3 65 (3 35) d
5	-	3 36 (2 74) d	_	3 39 (2 3–2 6) d
6	38-40 (29) d	3 64 (2 5) t	3 95 (2 81) d	3 76 (2 3-2 6) d
7	38-40 (372) tt	3 06 (2 11) tt	4 12 (3 9) tt	3 27 (2 3-2 6) tt
8	3 8-4 0 (3 32) t	3 76 (3 13) td	5 2 (5 04) t	5 12 (4 89) t
9	60-62 (60-62) obs		6 35 (6 37) d (br)	5 62 (5 46) d (br)
13a	62 (605) s (br)	6 23 (5 96) dd	5 45 (5 17) d	5 43 (5 12) d
13b	6 2 (6 24) s (br)	6 23 (6 18) dd	6 15 (6 06) d	6 15 (6 02) d
14	1 6 (1 47) s (br)	1 65 (1 46) s (br)	1 60 (1 52) s (br)	1 68 (1 54) s (br)
15	1 67 (1 5) s	1 69 (1 52) s	1 65 (1 46) s	1 68 (1 47) s
3′	61-63 (573) q (br)	6 15 (5 72) qq	6 2 (5 75) qq	6 17 (5 76) q (br)
4'	20 (193) dq	2 04 (1 91) dq	2 00 (1 94) dq	2 02 (1 95) dq
5'	1 97 (1 8) s (br)	1 99 (1 76) quint	1 85 (1 8) quint	1 86 (1 79) quint
AcO	2 1 (1 7) s	2 14 (1 64) s	2 03, 2 1	2 04, 2 11
			(1 63, 1 64) s	(1 6, 1 63) s
OH	1 52 d, 2 92 s	2 54 d	307 s (br)	·

J (Hz) 2, 3 = 19, 5, 6 = 102, 6, 7 = 103, 7, 8 = 105, 8, 9 = 102, 7, 13a = 30, 7, 13b = 31, 13a, 13b = 12, 3', 4' = 71, 3', 5' = 15, 4', 5' = 15

Numbers in parentheses are chemical shifts in C₆D₆

the H-7 signal to a doublet of triplets (J = 10.5 Hz, J)= 30 Hz) and irradiation at the frequency of H-9 collapsed the H-8 triplet to a doublet and the broad C-14 methyl singlet to a doublet ($J \sim 10 \text{ Hz}$) Saturation of the broad H-2 signal at $\delta 5$ 42 changed the doublet at $\delta 3$ 39 (H-3, J = 1.9 Hz) to a singlet and also sharpened the C-14 methyl signal These results indicated a long-range Wcoupling between H-14 and H-9 and a homoallylic coupling between H-14 and H-2 Conversely, irradiation of the C-10 vinyl methyl signal changed the H-9 broad doublet to a doublet of doublets (J = 10.2 Hz, J) ~ 10 Hz) and the H-2 broad singlet to a triplet (J ~ 10 Hz) indicating coupling not only between H-14 and H-9 and H-14 and H-2, but also a residual coupling between H-9 and H-2 of the same magnitude. The above spectral data established structure of zoapatanolide C (1a)

126

Zoapatanolide D (1b), C₂₂H₂₀O₈, mp 205-207°, differed from zoapatanolide C (1a) by the lack of a hydroxyl group, most likely the hydroxyl group at C-5, since the ¹H NMR spectrum showed an extra proton signal as a broad doublet at δ 3 36 (J = 10 2 Hz) and the H-6 signal as a triplet Acetylation of 1b corroborated the above assumption since the IR spectrum of the acetylation product 1d did not show hydroxyl absorption The ¹H NMR data of 1b indicated close similarities with 1a It showed the presence of an acetate, an angelate and a secondary hydroxyl group as in zoapatanolide C (1a), but the H-9 and the H-7 signals were shifted upfield to δ 5 44 and 306, respectively These differences in the chemical shifts of H-9 and H-7 strongly suggested that the configuration of the hydroxyl group at C-5 in zoapatanolide C (1a) must be α , and strongly deshields the α -protons at C-7 and C-9

The stereochemistry at C-5 in zoapatanolide D (1b) and at C-6, C-7, C-8 and C-9 in both 1a and 1b was derived from the coupling constants, which indicated a *trans*-

diaxial relationship between these protons The α -orientation of the hydroxyl group at C-8 is also strongly suggested by the deshielding effect on one of the exocyclic methylene protons and the splitting of these signals due to the geminal coupling [5], which was clearly observed when the 1H NMR spectrum of 1b was run in C_6D_6

The stereochemistry of the acetate at C-2 and the epoxy group at C-3, 4 was assumed to be β and α by comparison with analogues [4, 5]

EXPERIMENTAL

Montanoa tomentosa Cerv (29 kg), collected at the UNAM Campus, Mexico City in July 1980, was extracted and fractionated as described before [2] The CHCl₃ fractions were combined and percolated on a column packed with 300 g Tonsil optimum extra (supplied by Tonsil Mexicana) and eluted with petrol, CHCl₃-Me₂CO Fourteen fractions (500 ml) were collected

Zoapatanolide C (1a) From fractions 3–5, after repeated chromatography, 1a was obtained as an amorphous solid (mp 110–115°), which was recrystallized from CHCl₃–Et₂O C₂₂H₂₆O₉, mp 117–118°, UV $\lambda_{\rm max}^{\rm MeOH}$ nm (\$\varepsilon\$) 207 (11544), IR $\nu_{\rm max}^{\rm KBr}$ cm⁻¹ 3430, 1762, 1718, 1630, EIMS (probe) m/z (rel int) 256 [M – AngOH – HOAc – H₂O] + (1 1), 228 [256 – CO₂], (0 8), 83[C₇H₅O] + (100 0), 55 [C₄H₇] + (25 0), 43 [C₂H₃O] (9 7), CIMS (isobutane) m/z 435 [MH] + (1), 417 [MH – H₂O] + (5), 375 [MH – HOAc] + (10), 335 [MH – AngOH] + (3), 275 [MH – HOAc – AngOH] + (13), 257 [MH – HOAc – AngOH – H₂O] + (18), 101 [AngOH + 1] + (100)

Zoapatanolide C acetate (1c) 1a (35 mg) was acetylated with Ac₂O-pyridine and worked up as usual to give 20 mg 1c as a gum UV $\lambda_{\rm max}^{\rm MeOH}$ nm (ϵ) 206 (51 646), IR $\nu_{\rm max}^{\rm film}$ cm $^{-1}$ 3440, 1783, 1740, 1670, 1650, EI MS (probe) m/z (rel int) 476 [M] $^+$ (0 3), 416 [M - 60] $^+$ (0 1), 376 [M - 100] $^+$ (0 3), 316 [M - 100 - 60] $^+$ (0 6), 83 [C₅H₇O] $^+$ (100 0), 55 [C₄H₇] $^+$ (16 2), 43 [C₂H₃O] $^+$ (12 1)

Zoapatanolude D (1d) Fraction 2 was rechromatographed on silica gel and eluted with petrol and mixtures of petrol–EtOAc From fractions eluted with petrol–EtOAc (4 1), 1b was obtained as a solid which was crystallized from CHCl₃–Et₂O, C₂₂H₂₀O₈, mp 202–204°, UV λ_{max}^{MCOH} nm (ϵ) 205 (15 965), IR ν_{max}^{MBr} cm⁻¹ 3430, 1760, 1720, 1632, EIMS (probe) m/z (rel int) 418 [M]⁺ (0 5), 358 [M – 60]⁺ (0 15), 318 [M – 100]⁺ (0 2), 83 [C₅H₇O]⁺ (100 0), 55 [C₄H₇]⁺ (23 4), 43 [C₂H₃O]⁺ (10 1)

Zoapatanolide D acetate (1d) Acetylation of 14 5 mg 1b gave the acetate 1d as a gum after prep TLC UV λ_{\max}^{MeOH} nm (ϵ) 205 (14 048), IR ν_{\max}^{flim} cm⁻¹ 1780, 1750, 1735, 1650, EIMS (probe) m/z (rel int) 460 [M]⁺ (0 7), 401 [M - 59]⁺ (0 5), 361 [M - 99]⁺ (1 1), 340 [M - 120]⁺ (0 3), 83 [C₅H₇O]⁺ (100 0), 55 [C₄H₇]⁺ (20 3), 43 [C₂H₃O]⁺ (11 6)

Acknowledgements-We thank Mrs T German and Mr F

Ramos, Herbarium of the Instituto de Biologia (UNAM), for identification of the plant material and Messrs R Saucedo, J Cardenas, H Bojorquez, L Velasco, R Villena and A Toscano for ¹H NMR, IR, UV and mass spectra

REFERENCES

- 1 Quijano, L, Calderón, J S, Gómez, G F and Rios, T (1979) Phytochemistry 18, 843
- 2 Quijano, L, Calderón, J S, Gómez, G F and Rios, T (1982) Phytochemistry 21, 2041
- 3 Korp, J D, Bernal, I, Fischer, N H, Leonard, C, Lee, I Y and LeVan, N (1982) J Heterocycl Chem 19, 181
- 4 Herz, W, Bhat, S W and Srinivasan, A (1972) J Org Chem 37, 2532
- 5 Salmón, M, Diaz, E and Ortega, A (1973) J Org Chem 1759